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The self-similarity problem with consideration of the relationship between viscosity and temperature in the range of 
Prandtl numbers 1-104 has been solved for laminar free-convective flow of a viscous fluid about an isothermal vertical 
plate. We have calculated the controlling temperatures for local heat transfer, as well as the magnitudes and positions 
for the maximum of longitudinal velocity, the force of friction, and the thickness of the boundary layer. 

A method was first proposed in [1] to reduce the flee-convective problem involving variable physical properties to a problem 

with constant parameters. It was demnostrated there that in the free convection of gases about a vertical plate there exists a unique 

controlling temperature T,  which corresponds to each physical parameter  of the process. Thus, for the average coefficient of heat 

transfer, its dimensionless magnitude is given by 0. = (T. - -  T0)/(T w -  To) = 0.62, while for the thickness of  the thermal boundary 

layer by level it is 0.02-0.33, for the coefficient of friction at the wall it is 0.9, and for the position of the longitudinal-velocity maximum 

it is 0.76. A number of studies have been devoted to an investigation of the influence exerted by variable viscosity on heat transfer 

at Pr > 1 [2-7]. Mikheev [2] proposed the introduction of the correction factor (Pro/Prw) ~ The correction factor (v0/vw) ~ 

and the controlling temperature 0, = 0.75 were derived in [3] for the exponential relationship between viscosity and temperature. 

These values were experimentally confirmed [4]. Analogous results for the relationship between v and temperature (1) were obtained 

by an approximate method in [6]. The influence of the variable viscosity on the remaining parameters of  the process, to the extent 

that we are aware, has not been analyzed in detail. It is determined not only by its relative change, i.e., by the quantity N = vo/vw, 
but by the nature of  the relationship between v and temperature. Thus, Carey and Mollendorf [5] assumed that this relationship 

was linear, while they calculated all of  the physical parameters on the basis of  the mean boundary-layer temperature. Here  it developed 

that in the range Pr = 1-1000, N = 0.11-9 deviations from the case of  constant physical properties are constant, which indicate 

the unacceptability of  using the mean temperature of  the boundary layer as the controlling temperature. 

In a number of  cases, in order to describe the relationship between temperature and the coefficient of  kinematic viscosity 

we can use the following formula: 

~0/~ = 1 + (~v - -  l) 0. (1) 

The possibility of  its application and the resulting accuracy for specific fluids have been analyzed in [7]. 

Let us examine the flow of  a fluid about an isothermal vertical plate in a Cartesian coordinate system; we will direct the x 

axis along the plate, and the y axis will be directed along the normal to that plate. On introduction of the dimensionless parameters 

[81 
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the problem reduces to one that is self-similar. 

We have to solve the following system of equations: 

(~/tSof")' + o , 7 5 f f "  - -  0,5 (f')~ -t- 0 = o, 
(2) 

e" + 0,75 Proe ' f  = 0 

for the boundary conditions r / =  0, f = f' = 0 - -  1 = 0, r / =  oo, f' = 0 = 0. The solution is found by the numerical Newton method, 

where in each iteration system (2) is integrated by the Runge,-Kutta----Gilles method. As the initial approximation we employed 

results obtained through a semiintegral method [6], which usually has made it possible to achieve convergence of the values of f (0)  

and 0'(0) with an accuracy to the sixth figure after the decimal point within several iterations. 

State Pedagogical Institute, Kaluga. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 60, No. 3, pp. 386-390, March, 
1991. Original article submitted February 8, 1990. 

0022/0841/91/6003-0303512.50 �9 1991 Plenum Publishing Corporation 303 



TABLE 1. Values of if(O) 

Pr  o 
N 

I 10 I00 I000 10000 

0,1 
0,2 
0,5 

1 
2 
5 

I0 

0,14548 
0,26625 
0,55229 
0,90819 
1,43994 
2,56276 
3,89490 

0,086393 
0,16091 
0,34680 
0,59283 
0,97721 
1,81638 
2,86324 

0,049649 
0,093144 
0,20399 
0,35595 
0,60322 
1,16355 
1,86611 

0,028179 
0,052930 
0,116543 
0,20497 
0,35217 
0,69919 
1,14987 

0,015888 
0,029862 
0,065870 
0,11617 
0,20064 
0,40381 
0,67601 

TABLE 2. Values of ---0'(0) 

Pro 

N 1 I0 100 1000 10000 

0,1 
0,2 
0,5 

1 
2 
5 

10 

0,31005 
0, 32970 
0,36693 
0,40103 
0,43675 
0,48179 
0,51110 

0,60718 
0,64963 
0,73715 
0,82684 
0,93189 
1,08511 
1,20911 

1,1142 
1,1946 
1,3654 
1,5495 
1,7784 
2,1361 
2,4360 

2,0013 
2,1471 
2,4605 
2,8040 
3,2440 
3,9692 
4,6130 

3,5699 
3,8310 
4,3936 
5,0143 
5,8180 
7,1757 
8,4320 

The integration interval is E = 0.05 for Pr _< 100 and E = 0.01 for Pr = 103-104; r/max = 20 for 1 < Pr _< 100 and r/max = 

50 for Pr >__ 1000. The results are shown in Tables 1 and 2. 

Based on the values found for 0'(0) we calculated the determining controlling temperatures for the local coefficient of heat 

transfer. They are equally valid for an isothermal plate as for the mean values. It must be kept in mind here that when we calculate 

the coefficient of  kinematic viscosity on the basis of the controlling temperature Tv, in the isothermal case it is not only the Grasshof 

number Gr x that changes, but also the Prandtl number Prv = V(Tv)/a. It is therefore necessary to choose T v so as to satisfy the 

condition 

acon~t (Pr v) = cz,,ar (Pro, N). (3) 

Here CXcons t is the coefficient of  heat transfer in the presence of constant physical properties and the Prandtl number Pry, Ova r is 

the coefficient of  heat transfer in the case of  variable physical properties, and in this case the Prandtl number is equal to Pr o at 

some distance from the wall. 

Relationship (3) leads to the equation 

(Prv/Pr0)~ 5 = 0' (0)[Prv. N=I /0 '  (0)[Pr0, N" (4) 

The familiar function of  the Prandtl number for constant physical properties [9] is found in the numerator of  the right-hand side: 

3 (  pr 2 )0,25 

0' (0)[prv, x=l = /4 (Pry) = T 2,43478 -~- 4,884 Pry ~ -}- 4,95283 Pr v 

Having solved Eq. (4) and having determined the Prandtl number Pr v, taking relationship (1) into consideration, it becomes 

possible to find the controlling temperature 0. for the local (and average) heat transfer: 

0, = (Pr0/Prv--  1) / (N--  1). (5) 

The values of  0. shown in Fig. 1 have been calculated in accordance with (5). Basically, they fall within the range 0. = 0.75-0.85. 

The complex nature of  the change in 0. can be ascribed to the influence of  two contradictory factors: viscous friction and inertial 

effect. As was demonstrated in [10], taking into consideration the variability of u in the absence of inertial terms leads to the monotonic 

rise of  0. as Pr o increases. 
For purposes of  comparison the figure shows the controlling temperatures, equivalent to the introduction of  the correction 

factor (u0/Uw) m, where m = 0.21, and these are obtained if the right-hand side of  (4) is replaced by this factor. For Pr o > 103 

the controlling temperatures calculated by a numerical method and determined on the basis of  the correction factor, when N > 

1 are close to one another. Numerical calculation shows that over the entire range of  change in N and Pr o it is impossible to describe 

the influence of  the variable viscosity by means of  a correction factor with a constant m. An analogous conclusion is reached by 
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Fig. 1. Temperature determining the Nusselt number; the Prandtl number: 1) 

1; 72) 10; 3) 102; 4) 103; 5) 104; numerical calculation of system (2) (a) for the 

correction factor (v0/Vw) ~ (b). 
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Fig. 2. Definitive temperatures for: 1) maximum longitudinal velocity Umax; 2) 

distance from wall to the point of  maximum longitudinal velocity 6m; 3) thickness 

of  thermal boundary layer based on level 0.016T; 4) force of  friction Fir at the 

wall; a) Pr o = 100; b) Pr o = 1000. 

the authors of  [11], where it is recommended when N > 10 to reduce the factor m to 0.17, which is in agreement with the nature 

of  the change in the controlling temperature in our calculations. Usually, in actual practice the controlling temperature is assumed 

to be constant. Let us find the error associated with such an assumption. For practical purposes, we can recommend the value 

of 0theo = 0.82, which makes it possible for the entire investigated range to achieve satisfactory accuracy. The maximum error 

when Pr o = 100, N = 10 amounts to 3.5%. With Pr o = 1 the error ranges from --0.4% to +2.6%. The value of 0. = 0.75 recommended 

in [4] works better in the region N > 1, where the error does not exceed 1.7%. When N < 1 the accuracy- is lower, the error increases 

to 6.4% for N = 0.1, Pr o = 10. 

A similar calculation of the controlling temperature was undertaken for other parameters of  the process: 
the maximum magnitude of the longitudinal velocity 

Umax = ~0 /xGr  ~ [max (Pro, iV), 

the force of  friction at the wall 

F f r  - -  ~ 0 / x  z Cr~ (0)[Pro, N ,  
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Fig. 3. Profile of  longitudinal velocity, constant viscosity: 1) 

Pr = 10; 2) Pr = 100; 3) variable viscosity: v0/~, w = 10, Pr o = 
100. 

the thickness of  the thermal boundary level at the 0.01 level 

6 t =  y = x (Gr~) -~  ~Io,o,, 

the distance from the wall to the point of  the maximum in the longitudinal velocity 6 m. The expression for 6 m is analogous to 

6 T. For the thickness 6 of  the dynamic boundary layer, calculated with respect to the 0.01Urea x level, we can use the following 

approximate relationship: 6 = C4q~-06 t, where C = 0.7 for 1 < Pr o < 103 and C = 1 for Pr o -- 104. The corresponding controlling 

temperatures can be seen in Fig. 2. An unexpected result is found for certain of  the parameters in that with an increase in N the 

controlling temperature becomes greater than unity, which contradicts general opinion with regard to its sense. This can be explained 

by the nonmonotonic nature of  the effect resulting from the variability of viscosity. 

Let the quantity u within the limits of  the boundary layer change from u w (at the wall) to u 0 (at some distance from the 

wall). We will perform three calculations: two with constant physical properties for u 0 and u w and the third, where viscosity varies 

from u 0 to u w. If the parameter  of  the process for the variable physical properties falls between the corresponding values for the 

constant properties, then the controlling temperature is 0 < 0. < 1. For example, Fig. 3 shows three velocity profiles: two for 

constant properties (N = 1, Pr = 100, v = u 0 and Pr = 10, u = ~'w) and one for the variable N = 10, Pr o = 100, for which u w 

_ u _< u 0. The maximum velocity falls between the values for the constant properties, and for this the controlling temperature 

is less than unity. And here the quantity 6m is smaller, and Ffr is larger, than each of the values for the constant properties, as 

a consequence of which the controlling temperatures for these values are greater than unity. 

In a comparison of the experimentally measured values of the velocity (or temperature) profiles under conditions of variability 

an at tempt is usually made to compare their properties with the theoretical values for the constant physical properties. It is implicitly 

assumed here that in all of  the cases the profiles are similar and that they can be combined, through selection of appropriate scales. 

For example, for the velocity scale we use the value of the coefficient of kinematic viscosity, calculated from the controlling temperature. 

Such a procedure occasionally leads to divergence between experimental and theoretical values for velocity in the region of its maximum 

(see, for example, [8, 12]). As we can see from Fig. 3, since the velocity profiles in the case of  variable properties are not similar 

to the profiles in the case of  constant physical properties, such divergence is fundamental and cannot be eliminated simultaneously 

through the entire thickness of  the boundary layer. 

CONCLUSIONS 

We have derived a self-similar solution for the free convection of a viscous fluid around a vertical isothermal plate where 

viscosity varied over a range of Pr = 1-104. 

We have calculated the controlling temperatures for the local and average heat transfer, the magnitude and position of the 

maximum in longitudinal velocity, the force of  friction, and the thickness of  the boundary layer. 

It has been established that for certain parameters of  the process the dimensionless controlling temperature becomes greater 

than unity, and this is explained by the nonmonotonic relationship between these parameters and the coefficient of  kinematicviscosity. 

It has been demonstrated that for a fluid with variable viscosity it is fundamentally impossible, through introduction of the controlling 

temperature, to refer the profile of  the longitudinal velocity to the viscosity case. 
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NOTATION 

~b, stream function, m2/sec; v, coefficient of kinematic viscosity, m2/sec; T, temperature, ~ N = v0/vw;/~, coefficient of dynamic 

viscosity; Pr, Prandtl number; f, dimensionless stream function; ~/, self-similar variable; Gr x = gfl(T w -  T0)x3/v02, Grasshof number; 

p, density of the fluid, kg/m3; a, heat transfer coefficient, W/(m2.K); 6t, thickness of thermal boundary layer; Ffr, force of friction. 

Subscripts: 0, temperature of the fluid at some distance from the wall; w, temperature of the wall; *, controlling temperature; max, 

maximum longitudinal velocity. 
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DETERMINING THE MAXIMUM VELOCITY OF A GAS 

BEING DISCHARGED OUT OF A NOZZLE 

V. V. Skryabin UDC 629.7.036,53 

It is proposed to calculate the maximum discharge velocity of a chemical~ neutral real gas out of a Laval nozzle with 

consideration given to the latent heat of vapor formation of the substance in the expansion of the gas within the nozzle 
to total condensation, as well as to calculate the parameters which correspond to the saturation line. An equation 

has been derived to determine the maximum velocity of the discharge gas from an energy point of view. 

The velocity at which a gas is discharged out of the diffuser of a Laval nozzle as the gas expands to a pressure of Pn = 0 and 

a temperature T n = 0 and, consequently, given a gas enthalpy of i n = 0 this discharge velocity is usually referred to as the maximum 

velocity [1]. The value of this maximum velocity is determined from the equation of conservation for the energy of the gas as the 
latter expands within a nozzle, without phase transition: 

W~ = 2i e. (1) 

With T e = const and a variable Pc for an ideal gas i e -- const, and, therefore, in actual practice, when T e = const, the value 

of W 1 is assumed to be independent of Pc [2]. 

Let us examine the question as to whether the velocity defined by Eq. (1) is the only maximum velocity for a chemically neutral 
real gas. A basis for the validity of the formulation of such a problem can be found, as demonstrated in [3, 4], that the heat of 

vapor formation evolved in the condensation of the metal vapors generates (within the diffuser of the nozzle) an increase in the 
velocity of the uncondensed gas. 
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